Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Extreme Weather

Skyfora launches updated Tropical Cyclone Seasonal Forecast model

Dan SymondsBy Dan SymondsApril 8, 20222 Mins Read
Share LinkedIn Facebook Twitter Email
Credit: Pixabay
Share
LinkedIn Facebook Twitter Email

Finnish weather intelligence company Skyfora has unveiled its updated Tropical Storm Seasonal Forecast model, which provides probabilistic predictions for the likelihood of various events in different categories for the upcoming tropical cyclone season.

The categories consist of tropical cyclone (TC) intensity, TC genesis by region, and TC landfall by region. In addition to pre-season forecasts issued in early April, May and June for the Atlantic basin, Skyfora also publishes mid-season forecasts in July, August and September, according to customer needs.

Based on a structure where each component consists of a Bayesian neural network, the Tropical Storm Seasonal Forecast model utilizes probabilistic machine learning and has been trained with several data sources including a large number of historical atmospheric, land and oceanic climate variables.

According to Skyfora, the skill of the Tropical Storm Seasonal Forecast for the Atlantic basin has been proved by extensive cross-validation experiments against the baseline, given by the average climatology over the years 1995-2021. For example, the mean absolute prediction error for major hurricanes is reduced by 50% against the baseline, and the Gulf of Mexico landfall prediction has a correlation of more than 0.7 with the true values for years 2011-2021.

Dr Svante Henriksson, founder and CEO of Skyfora, said, “Seasonal forecasting and particularly skilled landfall forecast have been traditionally difficult to develop and prove due to the chaotic nature of tropical cyclones. Last year we published our first seasonal forecast, but since then we have changed focus from traditional point predictions and decided to deploy Bayesian deep learning instead, as the resulting probability distribution is more useful for our re-/insurance, catastrophe modeling and insurance-linked securities (ILS) customers. This has proven to be the right decision.”

One of the early adopters of Skyfora’s Tropical Storm Seasonal Forecast is Securis Investment Partners in London, UK. Securis’s team has extensive experience of risk analysis and developing natural catastrophe models for ILS managers and risk modelers.

Dr Paul Wilson, head of non-life analytics, Securis, said, “Skyfora’s team is ambitious, and they provided a new approach to a very challenging problem. By working closely together we’re able to focus the work on the most impactful metrics and most relevant questions of the business. By monitoring how the forecasts, and risk, evolve during the season we hope Skyfora will help us more accurately and more dynamically manage our risks.”

Previous ArticleNOAA creates new institute dedicated to improving water and flood prediction
Next Article German researchers use machine learning to improve wind gust forecasts

Read Similar Stories

Digital Applications

Tianjin University AI model turns street cameras into rainfall sensors

May 14, 20253 Mins Read
Climate Measurement

WMO releases State of the Climate in Africa 2024 report

May 12, 20255 Mins Read
Lightning Detection

Vaisala unveils helideck monitoring software for offshore operations

May 9, 20253 Mins Read
Latest News

EXCLUSIVE INTERVIEW: Ramla Qureshi, McMaster University’s Department of Civil Engineering

May 14, 2025

Tianjin University AI model turns street cameras into rainfall sensors

May 14, 2025

University of Exeter launches £5m, five-year project to model Sun’s atmosphere

May 13, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • ZOGLAB Microsystem Co., Ltd
Latest Job Postings
  • Researcher/Engineer to support data-based weather forecasting (R2/RE2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by