Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Features

Creating a data-rich future with aeronautical weather sensors

Mike Robinson, Matt Fronzak and Tom Becher, The Mitre Corporation, and Matthias Steiner, National Center for Atmospheric ResearchBy Mike Robinson, Matt Fronzak and Tom Becher, The Mitre Corporation, and Matthias Steiner, National Center for Atmospheric ResearchNovember 18, 20208 Mins Read
Share LinkedIn Facebook Twitter Email
Share
LinkedIn Facebook Twitter Email

Aviation and meteorology have grown up together through a mutually beneficial relationship.1,2 Weather affects the safety, efficiency and reliability of aviation, and aviation is one of the key contributors of weather data aloft, thus enhancing weather prediction. 

At present, aviation is undergoing a dramatic transformation through the rise of the small unmanned aerial system (sUAS) (left) and electric vertical take-off and landing (eVTOL) aerial vehicles envisioned for on-demand ridesharing across metropolitan areas.3 This emerging advanced aerial mobility will occupy the lowest layers of the atmosphere (5,000ft and below), an altitude band that has been largely devoid of weather observations. 

Thus, imagine a future in which every aeronautical vehicle operating in the airspace system of the USA, for example, would provide consistent, in situ weather observations. How would this improve the mission execution for all modes of aerial transportation? How might that weather information be used to improve all weather and weather impact predictions, thus enhancing benefits to society as a whole?

That is exactly the assertion that Robinson et al (2020)4 are making: All aeronautical vehicles operating in the airspace of the USA should be required to measure, transmit and share the in situ meteorological conditions encountered along the flight trajectory. 

Reporting all conditions is absolutely key. Benign conditions for large aircraft may be hazardous for small aircraft due to their significantly increasing sensitivity to weather. Moreover, future automated
and eventual autonomous operations will require advanced weather sensing capabilities to ensure safe and efficient operations.

It is believed that all aircraft operating in US airspace should be required to measure and share in situ data on the meteorological conditions encountered in the flight path

Adding value

This position for mandatory weather reporting will create opportunities and add value that ultimately outweighs the investment. The emerging modes of transportation, such as eVTOLs and sUASs operating in non-traditional airspaces, pose more stringent requirements on our weather monitoring and prediction capabilities than can be satisfied at present. 

The scientific community aims to improve its understanding of atmospheric processes in the lower levels above Earth’s surface (i.e. 0-5,000ft AGL) and especially complex environments, such as rugged terrain and urban landscapes, or near thunderstorms. Detailed observations are essential to further the scientific understanding, which in turn enables better predictions – not just of weather, but also of outcomes or responses influenced by weather.

While many observations are available at ground level, relatively limited observations are made aloft. Through the proposed mandate, a wealth of new and needed observations will become available (e.g. from sUAS and eVTOL vehicles operating in the lower parts of the atmosphere), thus greatly expanding the already long and mutually beneficial synergy between aviation and meteorology. 

It has been clearly demonstrated that observations made by large transport category aircraft have a huge positive impact on numerical weather prediction systems.5 It is anticipated that the emerging new stream of meteorological observations from vehicles operating in non-traditional airspaces and emerging crowdsourcing of individual observation stations will substantially enhance our weather prediction capabilities, in turn yielding increased safety, efficiency and reliability of aviation operations and public safety at large.

Regulatory challenges

As the number of aeronautical vehicles across multiple aviation sectors that support ubiquitous weather data increases dramatically over time, formal data stewardship will be required to ensure proper retrieval and storage, appropriate data quality (validation) and ease of access for approved data users.

Today, there are multiple organizations that feel they own this responsibility, such as the International Air Transport Association (IATA) for objective turbulence information from commercial aircraft, NOAA NWS for all aircraft meteorological data relay (AMDAR) data in the USA and Flyht Aerospace Solutions Ltd for all tropospheric airborne meteorological data reporting (TAMDAR) data worldwide. These efforts will serve as initial roadmaps and provide some best practices for data stewardship.

At present, a relatively small number of operators have invested in advanced in situ weather observation systems that provide objective reports of relative humidity, turbulence and icing. These operators consider that the weather information they collect belongs to them, even while understanding and appreciating its potential impact on flight safety; they share it only with other operators who have also invested in similar advanced in situ weather observation systems and share the same hazardous weather information with them.

This question of data ownership and access becomes significantly more complex when there are many more operators involved, including substantially more commercial companies using sUAS and eVTOL vehicles to support both direct and indirect business objectives. The advocated mandate requires that all vehicle owners and operators must observe weather and share it with a larger community.

However, scenarios where collective access could be considered unfair or inequitable, as well as potential opportunities to manipulate this agreement, can be envisioned. Thus, data ownership and access agreements will indeed require careful consideration, and more detailed evaluations of best practices for similar situations in other domains (for example energy, natural resource access).

Communal use of weather data collected from many individual users may come with conditions for use that will need to be defined and implemented. For example, shared weather data will likely need to be encrypted and its source de-identified to better protect privacy concerns. These types of data privacy steps will help companies and organizations maintain some anonymity when operating aeronautical vehicles for purposes specific to their business or operation.

To prevent misuse of information, the proposed mandate must closely consider how best to define, implement and govern data privacy policies and technologies. Moreover, methods to be deployed for communicating and relaying information from one aeronautical platform to another, or from an aircraft to the ground, will be at risk for cyber interference. The implication of such intrusion to airborne automation systems is great, and significant consideration is needed to determine how best to protect aeronautical vehicles, the environment in which they operate and vast archives of collected data from bad actors.

There are a multitude of factors to consider in the application of big data analytics and cloud computing in aerospace and meteorological research

Overcoming barriers

We are looking at a data-rich future, where sharing of data and information will yield greater benefits to air transportation (and beyond) than can be achieved individually by organizations and/or operators. The right time to consider such a mandate is now, as this new class of emergent vehicles is still ramping up, thus presenting more advantageous equipage opportunities. 

The overall path forward to ultimately realizing the envisioned benefits, however, is not easy. There are many hurdles along the way, related to technical (e.g. sensors, communication), cost (installation, operation, return on investment) and regulatory aspects (data standards, ownership, cybersecurity, etc) that will need to be worked out. 

In addition, trade-off and benefits studies will be needed to address how all that data would best be used. These studies will include offline scientific investigations focused on process understanding and development of predictive capabilities, as well as real-time uses of such data to support more complex
(and, in parts, autonomous) aviation operations and innovative data assimilation procedures for even broader societal applications and benefits.

The coming decade is considered to be the right time to provide significant weather impact mitigations and to reduce the weather sensitivity of the aviation and aerospace industries and society at large. Using recent breakthroughs in vehicle, sensor, communications and computing technologies, we believe the aviation, aerospace and meteorological communities are ready to collaboratively leverage big data analytics, cloud storage, networking, AI and material innovations to: collect, provide and apply ubiquitous weather data for significant air travel safety, efficiency and reliability improvements for all current operations;
address the new operational concepts to be deployed in the airspace systems around the world over the next decade; and at the same time produce significant weather forecast improvements that benefit overall societal safety and well-being.

References:

1. S Haupt et al, 100 years of progress in applied meteorology. Part I: Basic applications, (Chapter 22), A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Monograph No 59, American Meteorological Society (AMS), 2019.

2. J Stith et al, 100 years of progress in atmospheric observing systems (Chapter 2), A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Monograph No 59, American Meteorological Society (AMS), 2019.

3. M Steiner, Urban Air Mobility – Opportunities for the Weather Community, Bulletin of the American Meteorological Society, 100(11), 2131–2133, 2019.

4. M Robinson et al, What if every aeronautical vehicle operating in our airspace were to report weather conditions?, 20th Aviation, Range, and Aerospace Meteorology Conference, Boston, MA, 28 pp, 2020.

5. E James and S Benjamin, Observation System Experiments with the Hourly-updating Rapid Refresh model using GSI Hybrid Ensemble-variational Data Assimilation, Monthly Weather Review, 145(8), 2897–2918, 2017.

This article was originally published in the September 2020 issue of Meteorological Technology International

Previous ArticleJoint UK-USA projects to study Subpolar North Atlantic
Next Article Vaisala launches high-accuracy humidity probe

Read Similar Stories

Features

EXCLUSIVE INTERVIEW: Ramla Qureshi, McMaster University’s Department of Civil Engineering

May 14, 20257 Mins Read
Features

FEATURE: How are NOAA’s latest buoys tackling ocean acidification?

March 18, 20256 Mins Read
Features

INTERVIEW: Météo-France

March 14, 20255 Mins Read
Latest News

EXCLUSIVE INTERVIEW: Ramla Qureshi, McMaster University’s Department of Civil Engineering

May 14, 2025

Tianjin University AI model turns street cameras into rainfall sensors

May 14, 2025

University of Exeter launches £5m, five-year project to model Sun’s atmosphere

May 13, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Nel Hydrogen
Latest Job Postings
  • Researcher/Engineer to support data-based weather forecasting (R2/RE2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by