Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Opinion

Phased-array weather radar can improve weather observations and the timeliness of warnings

Li Yinghe, Wei Yanqiang, Wang Zhirui and Huang Yong,  senior engineers, Aerospace Newsky TechnologyBy Li Yinghe, Wei Yanqiang, Wang Zhirui and Huang Yong, senior engineers, Aerospace Newsky TechnologyOctober 22, 20203 Mins Read
Share LinkedIn Facebook Twitter Email
The phased-array weather radar installed in Jiangsu Province by Aerospace Newsky Technology Company
Share
LinkedIn Facebook Twitter Email

Meso- and microscale weather events, such as tornadoes, microbursts and severe thunderstorms,
usually change rapidly and have a short lifetime. The traditional mechanically scanning weather radar has difficulty in making accurate measurements of these weather events because the radar takes a long time (usually several minutes) to complete one volume scan. Missing or taking inaccurate measurements of these weather events may result in an incorrect forecast and terrible damage. Improving the scan rate and decreasing the volume scan time have become an urgent demand in weather surveillance. As such, weather radar systems that adopt a phased-array antenna, i.e. phased-array weather radar (PAWR), have been attracting more and more attention and are becoming an important trend. 

PAWR has a flat panel antenna, which consists of many fixed antenna elements, and each antenna element can transmit and receive the signal. By changing the frequency or phase of the signals of all the elements, the antenna beam can be steered according to the control, i.e. electronically scanning. As the frequency or phase can be changed in several milliseconds, beam steering is very quick. This means the radar can skip the clear-air region and spend more time on the interesting weather events, leading to a higher scan rate. Since the locations of the clear region and the weather events are random and changing, the scanning strategies need to be considered and designed carefully. 

The wide transmitting beam and the eight simultaneous narrow receiving beams
formed by the C-band PAWR based on DBF

By providing a transceiver and an A/D channel for each antenna element, the PAWR obtains the capacity for digital beamforming (DBF), which is a revolutionizing technology. DBF technology has numerous advantages including a better shaped transmitting beam, multiple simultaneous receiving beams and adaptive null formation for interference suppression. By forming one wide transmitting beam and several simultaneous narrow receiving beams in elevation, the PAWR sweeps several elevation angles in one 360° scan in azimuth. Thus the scan rate increases several times and one volume scan will take only less than a minute. This is very helpful to detect, measure and forecast the meso- and microscale weather events. 

Fast scanning

Supported by the tornado detection radar project, a C-band PAWR designed and manufactured by Aerospace Newsky Technology Company has been installed in Jiangsu Province close to Gaoyou Lake where tornadoes happen most frequently in China. The radar consists of an antenna tower and a square cabin. The antenna, T/R module and azimuth servo are on the antenna tower, and the data processing, display and console are in the square cabin. The radar scans electronically in elevation and mechanically in azimuth, which gives a balance between cost and performance. It is an element-level digital array and has the ability to perform digital beamforming. The radar can form up to eight receiving beams simultaneously. The volume scan can be completed in less than one minute. Maximum detection range is about 200km (125 miles). The radar uses pulsed compression technology and can reach 150m (492ft) spatial resolution.

PAWR has some disadvantages that must be overcome: the amplitude and phase consistency must be guaranteed or the performance will deteriorate greatly; the antenna gain and beam width change with the scanning angle; the radar sensitivity decreases if a wide transmitting beam is formed. To make the best use of PAWR, methods and technologies for radar calibration, scan strategies and other aspects of PAWR are under study. 

This work is supported by the National Key R&D Program of China (2016YFE0206900).

This article was originally published in the September 2020 issue of Meteorological Technology International

Previous ArticleMonitoring meteorological conditions for on rocket launches
Next Article Copernicus Sentinel-6 Michael Freilich: preparing for launch

Read Similar Stories

Opinion

OPINION: Advancing the monitoring of space weather events

February 26, 20255 Mins Read
Opinion

OPINION: Are weather forecasts better with artificial intelligence?

July 10, 20244 Mins Read
Opinion

OPINION: Extreme weather phenomena and climate change require preparedness and risk management

April 4, 20244 Mins Read
Latest News

Integrated model improves flood risk assessment in China

May 15, 2025

EXCLUSIVE INTERVIEW: Ramla Qureshi, McMaster University’s Department of Civil Engineering

May 14, 2025

Tianjin University AI model turns street cameras into rainfall sensors

May 14, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • REMTECH
Latest Job Postings
  • Researcher/Engineer to support data-based weather forecasting (R2/RE2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by