Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Polar Weather

Researchers warn of rapid retreat of glaciers in West Antarctica

Dan SymondsBy Dan SymondsFebruary 11, 20224 Mins Read
Share LinkedIn Facebook Twitter Email
Credit: Pixabay
Share
LinkedIn Facebook Twitter Email

An international team of researchers have observed rapid and unprecedented glacier retreat rates in West Antarctica by using an advanced remote imaging system known as synthetic aperture radar interferometry.

Thanks to the new technology, the activity of the Pope, Smith and Kohler glaciers in West Antarctica’s Amundsen Sea Embayment are being documented with levels of clarity and completeness never seen before.

Pietro Milillo, assistant professor of civil engineering at University of Houston and the article’s lead author, said, “Thanks to the new generation of radar satellite, we have been able in recent years to witness retreat rates faster than ever observed among glaciers around the world. That’s a warning sign that things are not settling, not stabilizing at all. This could have severe implications for the equilibrium of the entire glacier system in this area.”

Leveraging data collected by the TanDEM-X and COSMO-SkyMed satellites, Milillo is joined by University of California Irvine researchers and scientists from three national space agencies: NASA, the German Aerospace Center (DLR) and the Italian Space Agency (ASI).

The research team plans to expand the scientific understanding it gains from the relatively small and less studied Pope, Smith and Kohler glaciers to their giant and fragile West Antarctica neighbors, the Thwaites and Pine Island glaciers, as well as to the entire Antarctic glacier system.

“The issue here is that we found such a high retreat rate – so high that we actually see these three smaller glaciers could actually capture the basin from the nearby Thwaites glacier, which would cause Thwaites to lose more mass,” Milillo said. “In Antarctica, glaciers don’t melt because of interaction with the sun. They melt because they accelerate and inject more ice into the ocean. That is one of the principal mechanisms of mass loss.”

At the southmost point of the Earth, the South Pole is in darkness most of the year. Its extreme weather means researchers can visit for only short periods of time, limiting their research.

“Radar is perfect for those applications. The beauty of radar is that it can penetrate clouds. It can look in any weather condition. It is also an active sensor, so we don’t have to rely on the light of the sun,” said Milillo. “In the past, we needed to wait several years in order to accumulate enough useful data. For that reason, we could observe only long-term trends. Now we can look at retreats on a monthly basis and can capture a new level of detail that will help improve glacier models and, in turn, refine our sea level rise estimates.”

Among those monthly measurements, the team looks at bi-weekly elevation changes to assess retreat at a glacier’s grounding line, the boundary on the underside of a glacier where frozen land meets warmer water. The grounding line becomes especially vulnerable because the warm water carves out an ice shelf that starts to float and could easily break completely away.

“If all ice above floatation in Antarctica would melt, the sea level would go up on average by 58m (190ft),” Milillo said. “If the signals we are looking at are confirmed, the mass loss from Antarctica, as well as Greenland, will rise. As they rise, the sea level will increase.”

“If all these glaciers melt, the sea water could raise rapidly. With 267 million people worldwide living on land less than 2m (6.6ft) above sea level, an abrupt migration could result. Also, subsidence could eventually see large structures sinking in vulnerable locales, including Houston,” Milillo said. “That’s why people should care about this issue. Even if doesn’t affect their life, it will affect their kid’s life and their grandkid’s life.”

For now, Milillo concentrates on the near future, including NASA’s plans in 2023 to launch its NISAR satellite, designed to provide even more quantity and more frequent data acquisitions than the current state-of-the-art synthetic aperture radar. Also known as NASA-ISRO SAR, the new satellite will measure the changes in ecosystems, dynamic surfaces and ice masses, providing Milillo and fellow scientists a bolder picture of our changeable Earth.

To view the full paper published in article published in Nature Geosciences, click here.

Previous ArticleOdyssey Project launched to boost Global Ocean Observing System
Next Article Poorest populations to bear brunt of future heat waves

Read Similar Stories

Lightning Detection

Vaisala unveils helideck monitoring software for offshore operations

May 9, 20253 Mins Read
Data

India Meteorological Department to treble size of doppler radar network by 2026

April 30, 20253 Mins Read
Satellites

USSF’s weather monitoring satellite receives operational acceptance

April 29, 20253 Mins Read
Latest News

WMO and Beijing Climate Centre host climate monitoring and prediction forum in Qingdao

May 16, 2025

Integrated model improves flood risk assessment in China

May 15, 2025

EXCLUSIVE INTERVIEW: Ramla Qureshi, McMaster University’s Department of Civil Engineering

May 14, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • REMTECH
Latest Job Postings
  • Researcher/Engineer to support data-based weather forecasting (R2/RE2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by