Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Climate Measurement

Predictive power of climate models may be hampered by volcanoes

Dan SymondsBy Dan SymondsApril 13, 20234 Mins Read
Share LinkedIn Facebook Twitter Email
Credit - Pixabay
Share
LinkedIn Facebook Twitter Email

Simulated volcanic eruptions may be affecting the ability of models to predict near-term climate, according to research led by the US National Center for Atmospheric Research (NCAR).

The new study found that the way volcanic eruptions are represented in climate models may be masking the models’ ability to accurately predict variations in sea surface temperatures in the tropical Pacific that unfold over multiple years to a decade.

These decadal variations in sea surface temperatures in the tropical Pacific are linked to climate impacts across the globe, including variations in precipitation and severe weather. Accurate predictions, therefore, could provide community leaders, farmers, water managers and others with critical climate information that allows them to plan years in advance.

Xian Wu, who led the study as a postdoctoral researcher at NCAR, said, “Near-term climate prediction on annual to decadal timescales is a rapidly growing and important field in the climate community because it bridges the gap between existing seasonal forecasts and centennial climate projections. When we rely on models to make these predictions, it’s important to carefully consider the model’s fidelity. In this case, we found that model errors in simulating the response to volcanic eruptions degraded our prediction skill.”

For the study, Wu and her colleagues relied on two parallel collections of climate simulations from the Decadal Prediction Large Ensemble, a data set produced using the NCAR-based Community Earth System Model. These simulations were run as hindcasts and cover the years from 1954-2015, allowing scientists to compare the simulations with what really occurred and evaluate their skill at predicting the future.

One collection of simulations included the three major volcanic eruptions that occurred during the study period: Agung (1963), El Chichón (1982) and Pinatubo (1991). The other collection did not.

Because it is well established that large volcanic eruptions can have significant, long-term cooling effects on the climate, Wu and her colleagues expected that the collection of simulations that included the volcanic eruptions would produce more accurate multiyear and decadal climate predictions. Instead, they found that the inclusion of the eruptions degraded the model’s predictive capabilities, at least in the tropical Pacific, an area that is especially important because of the connections between sea surface temperatures and near-term climate events.

For example, the simulations that included the volcanoes predicted a subsequent cooling of the sea surface temperatures in the tropical Pacific after the eruptions. In reality, that region of the ocean warmed, a change that was well predicted by the simulations that did not include the volcanic eruptions.

These findings highlight the difficulty of accurately representing the complex climate impacts that follow a volcanic eruption in a model, a task made more challenging because researchers only have a few real-life examples in the observational record. Scientists know that volcanoes can loft sulfur gasses high into the stratosphere where they can transform into sunlight-reflecting aerosols. But how the resulting cooling ultimately affects the entire Earth system, including sea surface temperatures, is not well understood.

“We just don’t have enough observations,” Wu said. “And our methods to observe what is happening in the stratosphere have only been available since the satellite era, which means we only have Chichón and Pinatubo.”

Still, Wu is hopeful that representations of volcanic eruptions and their impacts in models can be improved over time and that, ultimately, this work will improve our ability to forecast important climate events years in advance.

“Decadal variability in the tropical Pacific is an important source of predictability worldwide,” Wu said. “It affects climate over the surrounding continents, as well as marine ecosystems. Better predictions will provide important information for stakeholders.”

The complete study was published in the journal Science Advances.

Previous ArticleNOAA National Hurricane Center appoints new director
Next Article Spire Global awarded NOAA contract for satellite weather data

Read Similar Stories

Climate Measurement

WMO and Beijing Climate Centre host climate monitoring and prediction forum in Qingdao

May 16, 20252 Mins Read
Hydrology

Integrated model improves flood risk assessment in China

May 15, 20253 Mins Read
Climate Measurement

WMO releases State of the Climate in Africa 2024 report

May 12, 20255 Mins Read
Latest News

WMO and Beijing Climate Centre host climate monitoring and prediction forum in Qingdao

May 16, 2025

Integrated model improves flood risk assessment in China

May 15, 2025

EXCLUSIVE INTERVIEW: Ramla Qureshi, McMaster University’s Department of Civil Engineering

May 14, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Meteomatics AG
Latest Job Postings
  • Researcher/Engineer to support data-based weather forecasting (R2/RE2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by