Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Climate Measurement

Study examines impact of prior weather on hurricane intensity

Lawrence ButcherBy Lawrence ButcherOctober 16, 20204 Mins Read
Share LinkedIn Facebook Twitter Email
Share
LinkedIn Facebook Twitter Email

Results of a new study, conducted by NASA researchers, indicates that ocean heat waves can increase the momentum of hurricanes as they approach land.

Although most hurricanes tend to weaken as they approach land, some rapidly increase in strength just prior to landfall – a phenomenon that is both dangerous and hard to forecast. Because current weather models can’t accurately predict this sudden intensification, communities preparing for a lesser storm often don’t have time to respond to the arrival of a much stronger one or to the magnitude of destruction it is likely to leave behind.

The new study,  published in Nature Communications, identifies pre-storm conditions that can contribute to this rapid intensification – an important step in improving the ability to forecast it.

“We analyzed the events that led up to Hurricane Michael in 2018 and found that the storm was preceded by a marine heat wave, an area of the coastal ocean water that had become abnormally warm,” said Severine Fournier, a NASA Jet Propulsion Laboratory scientist and a co-author of the study. “Marine heat waves like this one can form in areas that have experienced back-to-back severe weather events in a short period of time.”

In October 2018, Hurricane Michael intensified from a Category 2 to a Category 5 storm the day before it made landfall in the Florida Panhandle. Michael is the most intense storm on record to hit the area, having left some US$25bn in damage in its wake. Using a combination of data gathered from weather buoys and satellites, the team behind the study examined ocean conditions before, during, and after the hurricane.

The researchers found that, about a month before the hurricane arrived, Tropical Storm Gordon moved through the Gulf of Mexico. Under normal circumstances, a tropical storm or hurricane – Gordon, in this case – mixes the ocean water over which it travels, bringing up the cold water that is deeper in the water column to the surface and pushing the warm surface water down toward the bottom. This newly present colder water at the surface typically causes the storm to weaken.

But Tropical Storm Gordon was immediately followed by a severe atmospheric heat wave during which the warm air heated the cooler ocean water that had recently been brought to the surface. This, combined with the warm water that Gordon had pushed down through the water column, ultimately produced plenty of warm-water fuel for an incoming hurricane.

“In that situation, basically the whole water column was made up of warm water,” explained Fournier. “So when the second storm – Hurricane Michael – moved in, the water it brought up during mixing was warm just like the surface water being pushed down. Hurricanes feed off the heat of the ocean, so this sequence of weather events created conditions that were ideal for hurricane intensification.”

Although the study focuses in-depth on Hurricane Michael, the scientists note that the pattern of weather events leading up to a major storm – and the resulting storm intensification – doesn’t appear to be unique to Michael.

“Both Hurricane Laura and Hurricane Sally, which impacted the US Gulf Coast in 2020, appeared to have similar setups to Michael, with both storms being preceded by smaller storms [Hurricane Hanna and Hurricane Marco, respectively],” said lead author Brian Dzwonkowski of the University of South Alabama/Dauphin Island Sea Lab.

“Combined with warmer-than-average summer conditions in the region, this pre-storm setup of the oceanic environment likely contributed to those intensifications prior to landfall as well.”

NASA scientists have been tackling the question of what causes hurricanes to intensify rapidly just before landfall from multiple angles. Another recent study led by NASA JPL’s Hui Su found that other factors, including the rainfall rate inside a hurricane, are also good indicators that can help forecast if and how much a hurricane is likely to intensify in the hours that follow. Both studies bring us closer to understanding and being better able to forecast rapid intensification of hurricanes near landfall.

Previous ArticleSeptember warmest on record
Next Article Polarstern returns after groundbreaking Arctic expedition

Read Similar Stories

Climate Measurement

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 20253 Mins Read
Climate Measurement

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 20257 Mins Read
Climate Measurement

NOAA’s US$3m AI-powered fire detection system undergoes second evaluation

May 21, 20254 Mins Read
Latest News

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 2025

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 2025

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • ELDES S.r.l.
Latest Job Postings
  • Postdoctoral researcher position on land surface and vegetation modelling (R2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
  • HPC Engineer for Earth Sciences applications (RE1/2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by