Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Data

Research sheds light on unexpected behavior of Australia’s Black Summer bushfires

Dan SymondsBy Dan SymondsOctober 20, 20214 Mins Read
Share LinkedIn Facebook Twitter Email
Credit: Pixabay
Share
LinkedIn Facebook Twitter Email

Research from Australia’s Bureau of Meteorology (BoM) has provided new insights into the destructive Black Summer bushfires of 2019-20, having discovered complex correlations between the atmosphere and extreme local bushfire behavior.

Led by BoM research scientist Dr Mika Peace, together with the Bushfire and Natural Hazards Cooperative Research Centre, the research used advanced supercomputer simulations that combined bushfire behavior and meteorology reports to investigate why the Badja Forest (New South Wales), Green Valley Talmalmo/Corryong (New South Wales/Victoria), Kangaroo Island (South Australia), Stanthorpe (Queensland) and Yanchep (Western Australia) bushfires were so extraordinary and challenging to firefighters.

Peace said, “The research uses two linked models to help us understand the processes driving these challenging and destructive fires – one which simulates the fire and one which simulates the weather, so by combining them we can see how both the fire and weather change in response to each other. It’s only possible to research the fire behavior resulting from these interactions between the fire and the weather, such as extreme, local winds and rotating fire plumes, through work like this.

“As we learn and share these findings, we are able to apply our knowledge to future bushfires. Right now, we can use the findings to help fire behavior analysts and fire meteorologists recognize the conditions that lead to extremely dangerous localized bushfire behavior,” she said.

Research shows that the drought and heatwave conditions experienced in the lead up to and during all five fires were a key factor in priming the landscape for extreme fire behavior, but local weather conditions were also important when combined with the very dry vegetation.

Unusual fire activity occurred in the overnight period, when fire intensity and rate of spread is typically expected to decrease. Interactions between strong winds above the ground, topography and the fire plume circulation were key drivers accelerating surface fire spread at night.

“The conventional understanding of bushfire behavior will tell you that fire activity will decrease overnight as the temperature drops, humidity rises and winds become lighter,” Peace explained. “The modeling shows that very strong low-level winds descending to the ground behind the fire plume were a critical reason why the Badja Forest and Corryong bushfires burned so fast overnight.”

Pyrocumulonimbus (pyroCb) clouds or fire generated thunderstorms were a feature of the 2019-20 fire season and the number of pyroCb clouds recorded was an Australian record for one season. However, the five fires examined were not all associated with pyroCb’s, highlighting that it is not the sole weather phenomenon associated with extreme fire behavior.

The simulations show that the fire-affected wind near a fire plume can be much stronger than the background winds and that destructive winds can occur, including extreme fire-front winds and fire generated vortices.

“For the bushfires that occurred close to the coast – Yanchep in Western Australia and on Kangaroo Island – the combination of heatwave conditions, the temperature difference between the hot land and the cooler water and local topography led to complex winds that changed the bushfire behavior,” said Peace.

Sea breezes, the local environment, and other such conditions caused erratic, variable winds along active fire lines which at times stretched for several kilometers.

The bushfire simulations undertaken through this research use the Australian Community Climate and Earth System Simulator Fire (ACCESS-Fire) model and are run on the National Computational Infrastructure supercomputer in Canberra. The results show the benefits of enhanced simulation capability and supercomputer power. Due to the level of detail, data and computer power required it is currently not possible to model bushfire behavior like this when bushfires are burning.

The project highlights the complexity of the fire environment and fire management and shows how a coordinated multidisciplinary approach can make effective fire behavior predictions.

To view a complete version of the research report Coupled fire-atmosphere simulations of five Black Summer fires using the ACCESS-Fire model, click here.

Previous ArticleUAE advances weather forecasting with Hewlett Packard supercomputer
Next Article Food insecurity, poverty and displacement in Africa exacerbated by climate change

Read Similar Stories

Climate Measurement

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 20253 Mins Read
Climate Measurement

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 20257 Mins Read
Data

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 20255 Mins Read
Latest News

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 2025

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 2025

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Kestrel Instruments
Latest Job Postings
  • Postdoctoral researcher position on land surface and vegetation modelling (R2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
  • HPC Engineer for Earth Sciences applications (RE1/2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by