Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Renewable Energy

Snowstorms found to have the biggest impact on US solar farm production

Dan SymondsBy Dan SymondsSeptember 1, 20215 Mins Read
Share LinkedIn Facebook Twitter Email
Thushara Gunda (left) and Nicole Jackson (right) from Sandia National Laboratories (credit: Randy Montoya)
Share
LinkedIn Facebook Twitter Email

Researchers in the USA have applied machine learning algorithms to real-world solar farm data to determine the impact of severe weather on energy generation.

The researchers from the US Department of Energy’s Sandia National Laboratories scoured maintenance tickets from more than 800 solar farms in 24 states and combined that information with electricity generation data and weather records to assess the effects of severe weather on the facilities.

Hurricanes, blizzards, hailstorms and wildfires all pose risks to solar farms both directly in the form of damage, and indirectly in the form of blocked sunlight and reduced electricity output. By identifying the factors that contribute to low performance, the research team hopes to increase the resilience of solar farms to extreme weather.

Thushara Gunda, senior researcher on the project, said, “Trying to understand how future climate conditions could impact our national energy infrastructure is exactly what we need to be doing if we want our renewable energy sector to be resilient under a changing climate. Right now, we’re focused on extreme weather events, but eventually we’ll extend into chronic exposure events like consistent extreme heat.”

The Sandia research team first used natural-language processing, a type of machine learning used by smart assistants, to analyze six years of solar maintenance records for key weather-related words.

“Our first step was to look at the maintenance records to decide which weather events we should even look at,” said Gunda. “The photovoltaic community talks about hail a lot, but the data in the maintenance records tells a different story.”

While hailstorms tend to be very costly, they did not appear in solar farm maintenance records, most likely because operators tend to document hail damage in the form of insurance claims, Gunda said. Instead, she found that hurricanes were mentioned in almost 15% of weather-related maintenance records, followed by the other weather terms, such as snow, storm, lightning and wind.

“Some hurricanes damage racking – the structure that holds up the panels – due to the high winds,” said Nicole Jackson, the lead author on the paper. “The other major issue we’ve seen from the maintenance records and talking with our industry partners is flooding blocking access to the site, which delays the process of turning the plant back on.”

Next, the researchers combined more than two years of real-world electricity production data from more than 100 solar farms in 16 states with historical weather data to assess the effects of severe weather on solar farms. They used statistics to find that snowstorms had the highest effect on electricity production, followed by hurricanes and a general group of other storms.

Then they used a machine learning algorithm to uncover the hidden factors that contributed to low performance from these severe weather events.

“Statistics gives you part of the picture, but machine learning was really helpful in clarifying the most important variables,” said Jackson, who primarily conducted statistical analysis and the machine learning portion of the project. “Is it where the site is located? Is it how old the site is? Is it how many maintenance tickets were submitted on the day of the weather event? We ended up with a suite of variables and machine learning was used to home in on the most important ones.”

She found that across the board, older solar farms were affected the most by severe weather. One possibility for this is that solar farms that had been in operation for more than five years had more wear-and-tear from being exposed to the elements longer, Jackson said.

Gunda agreed, adding, “This work highlights the importance of ongoing maintenance and further research to ensure photovoltaic plants continue to operate as intended.”

For snowstorms, which unexpectedly were the type of storm with the highest effect on electricity production, the next most important variables were low sunlight levels at the location due to cloud cover and the amount of snow, followed by several geographical features of the farm.

For hurricanes – principally hurricanes Florence and Michael – the amount of rainfall and the timing of the nearest hurricane had the next highest effect on production after age. Surprisingly low wind speeds were significant. This is likely because when high wind speeds are predicted, solar farms are preemptively shut down so that the employees can evacuate, leading to no production, Gunda said.

The research team is working to extend the project to study the effect of wildfires on solar farms. Because wildfires aren’t mentioned in maintenance logs, they were not able to study them for this paper. “Operators don’t stop to write a maintenance report when their solar farm is being threatened by a wildfire,” Gunda said. “This work highlights the reality of some of the data limitations we have to grapple with when studying extreme weather events.”

“The cool thing about this work is that we were able to develop a comprehensive approach of integrating and analyzing performance data, operations data and weather data,” Jackson said. “We’re extending the approach into wildfires to examine their performance impacts on solar energy generation in greater detail.”

The researchers are currently expanding this work to look at the effects of severe weather on the entire electrical grid, add in more production data, and answer even more questions to help the grid adapt to the changing climate and evolving technologies.

This research was supported by the US Department of Energy’s Solar Energy Technologies Office and was conducted in partnership with the department’s National Renewable Energy Laboratory. The results were published in the scientific journal, Applied Energy.

Previous ArticleSea and greenhouse gas levels highest on record
Next Article Research discovers that Congo rainforest produces its own rain during spring season

Read Similar Stories

Climate Measurement

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 20253 Mins Read
Climate Measurement

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 20257 Mins Read
Data

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 20255 Mins Read
Latest News

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 2025

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 2025

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • R.M. Young Company
Latest Job Postings
  • Postdoctoral researcher position on land surface and vegetation modelling (R2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
  • HPC Engineer for Earth Sciences applications (RE1/2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by