Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Data

Urban heat forecasts could be enhanced with machine learning, UK Met Office says

Elizabeth BakerBy Elizabeth BakerAugust 13, 20245 Mins Read
Share LinkedIn Facebook Twitter Email
The Met Office has released a study thought to be the first of its kind to study the use of citizen observations and machine learning (ML) to enhance the accuracy of temperature forecasts at a hyper-local level.
Credit: Met Office
Share
LinkedIn Facebook Twitter Email

The Met Office has released a paper thought to be the first of its kind to study the use of citizen observations and machine learning (ML) to enhance the accuracy of temperature forecasts at a hyper-local level.

The paper, published in the Royal Meteorological Society’s Meteorological Applications journal, highlights a number of potential improvements to hyper-local forecasts for heatwaves in urban areas by harnessing citizen observations, land cover data and ML.

The research was funded in part by the Met Office Weather and Climate Science for Service Partnership India project, which is supported by the Department for Science, Innovation and Technology. Additional support was provided by the Natural Environment Research Council and the Science and Technology Facilities Council.

ML-powered hyper-local forecasts

Supported by the University of Reading and the Australian Bureau of Meteorology, the proof-of-concept study investigated eight heat events in London from 2019 to 2021. The study integrated operational Met Office UK Variable forecasts, quality-controlled citizen observations from the Weather Observations Network and land-use data from ESA World Cover to train the machine learning (ML) model. After training on these heat events, the models would then forecast the temperatures for other heat events within the period.

The study found that ML methods of forecasting urban heatwaves improved the prediction of air temperatures by up to 11% compared to the original weather forecast data. In addition, ML enabled temperature forecasts to be made at 225 times the resolution of standard operational Met Office forecasts. Forecasting the weather using physics-based models means dividing the atmosphere over the UK into equal-sized boxes to facilitate weather predictions to be made for each square.

The researchers looked at three different possible ML algorithms with further detail explored as part of the peer-reviewed paper. If citizen observations across the UK and during all weather conditions were incorporated, the ML technique could be extended to make hyper-local predictions year-round in UK cities. It’s also hoped the study will provide a base for further research into the applications of ML in meteorology.

The authors also demonstrated that as the number of citizen observations and heatwaves used to train the ML models was increased, the better the ML predictions became. It is therefore believed that the method will become more powerful in the future, since the number of citizens sharing their weather observation data is increasing and the time length of their records will keep growing.

This method, combined with citizen observations and urban land cover data to aid the ML, enables the temperature forecast to learn from previous events and account for natural and man-made influences on the temperature, which can vary significantly within relatively short distances in cities.

Preparing for extreme urban heat

Lewis Blunn, lead author and Met Office urban modeling expert, said, “We can already observe an increase in extreme heat events in the UK and the greatest impacts are often felt in cities. In a warming world, ML can be used to better understand impacts on communities at a much finer scale and could increase resilience and ultimately save lives.

“The prediction of urban heat at hyper-local scale has often been tricky for operational weather forecast models due to the complexity of urban areas. By combining quality-controlled citizen observations and land cover data with forecast models and ML, this paper demonstrates the potential for enhanced temperature forecasts in urban areas at a much higher resolution.

“Being able to accurately predict heat in cities could help better inform decision makers on where to direct resources during heatwaves, enabling improved protection of human health and infrastructure. Using ML to get the resolution to a 100m level would also improve the efficiency of creating highly detailed forecasts, allowing forecasts to be made more quickly and with less energy consumption.”

Reading PhD students Flynn Ames, Hannah Croad, Adam Gainford, Ieuan Higgs and Brian Lo played a key role in the research, helping to develop the ML techniques. Croad, one of the team of PhD researchers working on the project, commented, “This has been a fantastic opportunity to collaborate with the Met Office and other PhD students while learning about ML and its application to weather forecasting. As a team, we all contributed to building the code, which meant we developed a good understanding of each step of the process. It is exciting to think that our work may provide the blueprint for new forecasting systems in the future.”

Team member Ames said, “The use of ML in weather and climate science is growing at a tremendous pace, and our work further highlights its wide-reaching applicability. We look forward to using our newly gained skills in upcoming projects to explore further applications of ML within weather forecasting.”

In related news, scientists at the US National Science Foundation National Center for Atmospheric Research (NSF NCAR) recently found that fires that blaze through the wildland-urban interface (WUI) are becoming more common around the globe – a trend that is likely to continue for at least the next two decades. Click here to read the full story.

Previous ArticleCaltech uses seismic technology and traffic noise to measure soil moisture
Next Article NIWA purchases NZ$20m supercomputer for high-resolution weather forecasting

Read Similar Stories

Climate Measurement

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 20257 Mins Read
Data

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 20255 Mins Read
Climate Measurement

Omaha’s National Weather Service office resumes twice-daily balloon launches

May 7, 20252 Mins Read
Latest News

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 2025

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 2025

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Forest Technology Systems Limited
Latest Job Postings
  • Postdoctoral researcher position on land surface and vegetation modelling (R2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
  • HPC Engineer for Earth Sciences applications (RE1/2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by