Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2023
    • September 2022
    • April 2022
    • September 2021
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Jobs
    • Browse Industry Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. September 2023
    2. April 2023
    3. September 2022
    4. April 2022
    5. Archive Issues
    6. Subscribe Free!
    Featured
    August 10, 2023

    In this Issue – September 2023

    By Web TeamAugust 10, 2023
    Recent

    In this Issue – September 2023

    August 10, 2023

    In this Issue – April 2023

    April 18, 2023

    In this Issue – September 2022

    August 12, 2022
  • Opinion
  • Videos
  • Supplier Spotlight
  • Jobs
    • Browse Industry Jobs
    • Post a Job – It’s FREE!
    • Manage Jobs (Employers)
Facebook LinkedIn
Meteorological Technology International
Climate Measurement

CIRES and NOAA research shows banned CFC emissions came from three regions of Asia

Dan SymondsBy Dan SymondsMarch 10, 20223 Mins Read
Share LinkedIn Facebook Twitter Email
Credit: Pixabay
Share
LinkedIn Facebook Twitter Email

A follow-up investigation by CIRES and NOAA scientists into the sudden increase in emissions of a banned ozone-destroying chemical between 2010 and 2018 has determined that a total of three regions of Asia were responsible for rising emissions, not just eastern China.

The research team’s analysis of air samples, including those taken during two major airborne research campaigns, not only confirmed increased emissions of CFC-11 from eastern China, but also found significant increasing emissions from temperate western Asia and tropical Asia.

Lead author Lei Hu, a CIRES scientist who studies CFCs and other trace gasses at NOAA’s Global Monitoring Laboratory, said her team analyzed a large set of high-quality, well-distributed air samples collected by the scientific community during that time period.

“Once we analyzed NOAA measurement data from samples collected all around the world and at different elevations in the atmosphere, we were able to account for most of the observed increase in emissions,” Hu said.

In 1987, NOAA scientists were part of an international team that proved that chlorofluorocarbons (CFCs) were damaging Earth’s protective ozone layer and creating the giant hole in the ozone layer that has formed over Antarctica every year. The Montreal Protocol, signed later that year, committed the global community to phasing out their production. Production of the second-most abundant CFC, CFC-11, would end completely by 2010.

In 2018, Hu’s NOAA colleague Stephen Montzka published a paper in the journal Nature that described what turned out to be the first known violation of the Montreal Protocol’s ban on the production and use of CFC-11. Based on analysis of data collected at the Global Monitoring Laboratory’s worldwide network of sampling sites, scientists were able to demonstrate that emissions of CFC-11 had increased by 25%, suggesting the presence of new production in violation of the protocol.

Montzka, with NOAA and CIRES colleagues, contributed to a 2019 companion study led by scientists with the Advanced Global Atmospheric Gases Experiment (AGAGE) which determined that at least 40 to 60% of the CFC-11 global emissions increase came from eastern mainland China. However, it remained unclear where the rest of the emission increase came from.

In this new work, by augmenting NOAA’s ongoing sampling network at Earth’s surface with measurements from the two short-term airborne campaigns, ATom and HIPPO, NOAA’s continuous in-situ air measurements and regular aircraft profiling, the researchers were able to better quantify emissions on regional to continental scales, particularly from Asia.

With the additional data, time and the help of NOAA’s HYSPLIT atmospheric transport model, which allowed scientists to track air motions back in time and identify upwind source regions, Hu’s research team from NOAA’s Global Monitoring Laboratory, Chemical Sciences Laboratory and CIRES was able to attribute nearly all of the 2012-2017 emission rise to the three regions in Asia.

Despite the success in detecting the rising CFC emissions, there are still substantial uncertainties in the estimates of regional and continental emissions derived by the researchers, as significant gaps remain in global sampling networks, Hu said.

Additional sampling locations and frequency, particularly downwind of under-sampled regions such as Asia, Africa and South America, would improve scientists’ understanding of global atmospheric composition changes, and make mitigation of associated ozone layer and climate impacts more timely, efficient and effective.

On the other hand, failure to address the substantial sampling gaps means that unexpected future global changes could go unattributed, making in-time recovery of the ozone layer more difficult.

To view the complete paper published in the journal Atmospheric Chemistry and Physics, click here.

Previous ArticlePine Technology and Tomorrow.io cancel merger agreement
Next Article BoM extends strategic agreement with Hydro Tasmania

Read Similar Stories

Data

NCAR tracks air pollution emissions across North America in six-week study

September 26, 20233 Mins Read
Climate Measurement

EMS and AMS renew collaboration agreement

September 25, 20231 Min Read
Climate Measurement

Major methane leak in the UK detected using satellites

September 22, 20232 Mins Read
Latest News

VIDEO: The Met Office’s latest global data set reveals the importance of humidity extremes

September 26, 2023

NCAR tracks air pollution emissions across North America in six-week study

September 26, 2023

Met Office releases global data set on humidity extremes

September 26, 2023

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • EUMETSAT
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2023 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by