Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • January 2026
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. January 2026
    2. September 2025
    3. April 2025
    4. January 2025
    5. September 2024
    6. April 2024
    7. January 2024
    8. September 2023
    9. April 2023
    10. Archive Issues
    11. Subscribe Free!
    Featured
    November 27, 2025

    In this Issue – January 2026

    By Hazel KingNovember 27, 2025
    Recent

    In this Issue – January 2026

    November 27, 2025

    In this Issue – September 2025

    August 11, 2025

    In this Issue – April 2025

    April 15, 2025
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Climate Measurement

Study reveals slowing Atlantic current could almost halve rainfall in Amazon

Hazel KingBy Hazel KingAugust 5, 20254 Mins Read
Share LinkedIn Facebook Twitter Email
Thermohaline circulation (THC) ,Conveyor belt
Credit: Adobe Stock
Share
LinkedIn Facebook Twitter Email

A CU Boulder-led study has revealed that some of the rainiest places on Earth, including the Amazon rainforest, could see their annual precipitation nearly halved if climate change continues to alter the Atlantic Ocean’s current.

The Tropical response to ocean circulation slowdown raises future drought risk study, published in Nature on July 30, examines the effects of climate change on the Atlantic Meridional Overturning Circulation (AMOC), a massive system of ocean currents that moves water through the Atlantic Ocean, transporting warm, salty water from the tropics to the North Atlantic.

According to the study’s authors, the AMOC plays an important role in regulating the climate by redistributing heat from the southern to the northern hemisphere. It also makes sure the tropical rain belt, a narrow band of heavy precipitation near the equator, stays north of it. The scientists have revealed that even a modest slowdown of AMOC could dry out rainforests, threaten vulnerable ecosystems and upend livelihoods across the tropics.

“That’s a stunning risk we now understand much better,” said lead author Pedro DiNezio, associate professor in CU Boulder’s Department of Atmospheric and Oceanic Sciences, adding that parts of the Amazon rainforest could see up to a 40% reduction in annual precipitation.

The ocean conveyor belt

As the climate warms, melting polar ice and increasing rainfall will dilute the ocean’s surface waters, making them less dense and potentially slowing down the circulation. The impact of a weakened AMOC on the tropics remains uncertain, because scientists have only been monitoring the system directly for two decades.

As a technician at a National Oceanic and Atmospheric Administration (NOAA) lab in Miami in 2005, DiNezio helped calibrate some of the earliest measurements of AMOC. At the time, he had no idea that he’d be studying that very same system two decades later.

“A few years ago, this monitoring system recorded signs of a decline in the AMOC, but it later rebounded. So, we weren’t sure if it was just a fluke. The problem is, we haven’t been measuring the ocean long enough to detect meaningful long-term change,” DiNezio said.

While scientists are uncertain whether the AMOC has already begun to decline, climate models predict the system will eventually weaken because of climate change.

Predicting the future

DiNezio and his team set out to explore how a future slowing of these critical ocean currents could affect global precipitation patterns.

“Changes in rainfall are very difficult to predict, because so many factors are involved in making rain, like moisture, temperature, wind and clouds. Many models struggle to predict how the pattern will change in a warming world,” DiNezio said.

The team turned to climate records from about 17,000 years ago, when the AMOC last slowed down significantly due to natural causes. Evidence of precipitation preserved in cave formations, as well as lake and ocean sediments, revealed how rainfall patterns responded to the slowdown during that period.

Rainfall shifts

Drawing on that data, DiNezio’s team identified the computer models that best captured those ancient rainfall shifts and used them to predict how the patterns could change in the future.

Their best models predict that as the AMOC weakens and cools the northern Atlantic, this temperature drop would spread toward the tropical Atlantic and into the Caribbean. This change, on top of rising global temperatures, will lead to significant reductions in precipitation over Central America, the Amazon, and West Africa.

“This is bad news, because we have these very important ecosystems in the Amazon,” said DiNezio. The Amazon rainforest contains almost two years of global carbon emissions, making it a major carbon sink on Earth. “Drought in this region could release vast amounts of carbon back into the atmosphere, forming a vicious loop that could make climate change worse.”

While DiNezio said the AMOC is unlikely to stop completely, even a small reduction in its strength could lead to changes across the entire tropical region, increasing the risk of reaching a tipping point. But how fast and how much it slows depends on the degree of future climate change.

“We still have time, but we need to rapidly decarbonize the economy and make green technologies widely available to everyone in the world. The best way to get out of a hole is to stop digging,” DiNezio concluded.

Source: https://www.colorado.edu/today/2025/07/30/rainy-tropics-could-face-unprecedented-droughts-atlantic-current-slows

In related news, Weathernews Inc. has signed a memorandum of understanding with the National Center for Hydrometeorological Forecasting (NCHMF) and the Hydrometeorological Survey, Technology and Services Center (HMSTS) of the Vietnam National Meteorological and Hydrological Administration (VNMHA) to provide AI-based forecast information for typhoons and heavy rainfall. Read the full story here

Previous ArticleWeathernews Inc. signs MOU with Vietnam Meteorological and Hydrological Administration for AI-based typhoon and heavy rain forecasting
Next Article Spire Global to provide historical weather data to European Space Agency

Read Similar Stories

Climate Measurement

UK to strengthen climate observations and satellite functions with £17m space innovation investment

December 4, 20253 Mins Read
Climate Measurement

Uncrewed systems prove new method for observing deep ocean currents in real time

December 4, 20253 Mins Read
Climate Measurement

WMO predicts borderline La Niña conditions

December 4, 20252 Mins Read
Latest News

UK to strengthen climate observations and satellite functions with £17m space innovation investment

December 4, 2025

Uncrewed systems prove new method for observing deep ocean currents in real time

December 4, 2025

WMO predicts borderline La Niña conditions

December 4, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Raymetrics
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by