Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Climate Measurement

University of Colorado Boulder creates detailed seasonal temperature record for Earth’s last 11,000 years

Elizabeth BakerBy Elizabeth BakerJanuary 30, 20234 Mins Read
Share LinkedIn Facebook Twitter Email
Share
LinkedIn Facebook Twitter Email

Scientists at the University of Colorado (CU) Boulder have used Antarctic ice cores analysis to create a seasonal temperature record of the Earth dating back 11,000 years.

The study of the planet’s recent climatic history includes summer and winter temperatures dating to the beginning of the Holocene and is described as the “first seasonal temperature record of its kind”.

It also validates one aspect of a long-standing theory about Earth’s climate that has not been previously proven – how seasonal temperatures in polar regions respond to Milankovitch cycles. Serbian scientist Milutin Milankovitch hypothesized a century ago that the collective effects of changes in Earth’s position relative to the sun – due to slow variations of its orbit and axis – are a strong driver of Earth’s long-term climate, including the start and end of ice ages (prior to any significant human influence on the climate).

This detailed data on long-term climate patterns of the past also provide a baseline for other scientists, who study the impacts of human-caused greenhouse gas emissions on the Earth’s present and future climate. By knowing which planetary cycles occur naturally and why, researchers can better identify the human influence on climate change and its impacts on global temperatures.

The cylindrical columns of ice that were studied were drilled from ancient ice sheets (mostly in Antarctica and Greenland), providing long-term data trapped in time about everything from past atmospheric concentrations of greenhouse gases to past temperatures of the air and oceans. The West Antarctic Ice Sheet (WAIS) Divide ice core measures 11,171ft (or more than 2 miles) long and 4.8in in diameter – containing data from as old as 68,000 years ago. Ice cores like this one are then carefully cut into smaller sections that can be safely transported to and stored or analyzed in ice core labs around the country – like the Stable Isotope Lab at CU Boulder.

For this study, researchers analyzed a continuous record of water-isotope ratios from the WAIS ice core. The ratios between the concentration of these isotopes (elements with the same number of protons but different numbers of neutrons) reveal data about past temperatures and atmospheric circulation, including transitions between ice ages and warm periods in Earth’s past. The university asserted that measuring seasonal changes in the planet’s history from ice cores is especially difficult, due to the fine detail required for their shorter timescales. A process within ice sheets known as diffusion, or natural smoothing, can blur this needed detail.

Additionally, these water isotopes tend to not stay in one place in the upper ice sheet but instead move around in interconnected pathways (similar to the air pockets in Styrofoam) as they change states between vapor and ice, over decades or centuries, before sufficiently solidifying. This process can “blur” the data researchers are trying to examine. But by using the high-quality ice cores from the West Antarctic Ice Sheet, high-resolution measurements and advances in ice core analysis from the past 15 years, the team was able to correct for the diffusion present in the data and complete the study.

For more than three decades, researchers at INSTAAR’s Stable Isotope Lab have been studying a variety of stable isotopes – nonradioactive forms of atoms with unique molecular signatures – found everywhere from the inside ice cores and the carbon in permafrost to the air in our atmosphere. Tyler Jones, lead author on the study and assistant research professor and fellow at the Institute of Arctic and Alpine Research (INSTAAR), joined the lab in 2007 as a master’s student and has never left. It then took almost a decade to figure out the proper way to interpret the data, from ice cores drilled many years before that meeting. The team’s next step is to attempt to interpret high-resolution ice cores in other places – such as the South Pole and in northeast Greenland, where cores have already been drilled – to better understand our planet’s climate variability.

Jones said, “The goal of the research team was to push the boundaries of what is possible with past climate interpretations, and for us, that meant trying to understand climate at the shortest timescales, in this case seasonally, from summer to winter, year-by-year, for many thousands of years. Humans have a fundamental curiosity about how the world works and what has happened in the past, because that can also inform our understanding of what could happen in the future.”

Kurt Cuffey, a co-author on the study and professor at the University of California Berkeley, said, “I am particularly excited that our result confirms a fundamental prediction of the theory used to explain Earth’s ice-age climate cycles: that the intensity of sunlight controls summertime temperatures in the polar regions, and thus melt of ice, too.”

Previous ArticleWMO to scale up early warning systems for six East African countries
Next Article FMI expands air quality service to include black carbon

Read Similar Stories

Climate Measurement

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 20253 Mins Read
Climate Measurement

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 20257 Mins Read
Data

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 20255 Mins Read
Latest News

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 2025

University of Pennsylvania and Microsoft Research develop machine-learning weather prediction model

May 22, 2025

VIDEO: Caltech’s autonomous underwater vehicle harnesses ocean currents to improve ocean monitoring

May 21, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Baron
Latest Job Postings
  • Postdoctoral researcher position on land surface and vegetation modelling (R2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
  • HPC Engineer for Earth Sciences applications (RE1/2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by